LED Intelligent Driver

- Dimming interface: DALI, Push DIM
- PWM digital dimming, no alter LED color rendering index.
- Dimming range: $0 \sim 100 \%$, LED start at 0.1% possible.
- Support lamp current state and fault feedback function.
- DALI dimming curve can be either linear or logarithmic.
- Non-load output voltage OV to prevent damages to LED caused by poor contact.
- Multi-current \& wide voltage, suitable for different power LED.
- Short circuit / Over-heat / Over load / Non-load protection.
- Class 2 power supply. Full protective plastic housing.
- DALI bus standard: IEC62386-101, 102, 207.
- Compliant with Safety Extra Low Voltage standard.
- Compliat
- Suitable for internal lights application for I/II/II.

DALI Push DIM

R-41072265

Main Characteristics

Dimming Interface:	DALI (IEC62386), Push Dim					Current Accuracy:		$\pm 3 \%$
Input Voltage Range:	$220-240 \mathrm{Vac} \pm 10 \%$					Max Output Voltage:		58 Vdc
Frequency:	$50 / 60 \mathrm{~Hz}$					Non-load Output Voltage:		OVdc
Input Current:	$<0.3 \mathrm{~A}$					PWM Frequency:		$\leqslant 4 \mathrm{KHz}$
Power Factor:	PF>0.95/230Vac, at full load					Dimming Range:		0~100\%
THD:	$\leqslant 20 \%$ at 230 Vac , at full load					Working Temperature:		ta: -30°
Efficiency:	>87\%					Working Humidity:		20~95
Inrush Current(typ.):	Cold start 6.31A at 230 Vac (twidth $=58.4 \mu \mathrm{~s}$ measured at 50% Ipeak)					Storage Temp., Humidity:		: $\quad-40 \sim 80$
Control Surge Capability: L-N: 1 kV						Temp. Coefficient:		$\pm 0.03 \%$
Leakage Current:	$<0.5 \mathrm{~mA} / 230 \mathrm{Vac}$					Vibration:		10~500
Operating Voltage:	$10-54 \mathrm{Vdc}$							for 72 m
Output Power Range:	2W~36W							
Output Current :	200 mA	350 mA	500 mA	600 mA	700 mA	900 mA	1050 mA	1200 mA
Output Voltage :	10-54V	10-54V	$10-54 \mathrm{~V}$	10-54V	10-52V	10-40V	$10-35 \mathrm{~V}$	10-30V
Output Power :	2W-10.8W	3.5W-18.9W	5W-27W	6W-32.4W	7W-36.4W	9W-36W	10.5W-36.75W	12W-36W

Protection

Over-heat Protection: Shut down the output when PCB temp. $\geqslant 110^{\circ} \mathrm{C}$, auto recovers when temp. back to normal.
Over Load Protection: Shut down the output when rated power $\geqslant 102 \%$ $\sim 125 \%$, auto recovers when the load is reduced.
Short Circuit Protection: Shut down automatically if short circuit occurs, auto recovers after faulty condition is removed.

Non-load Protection: Shut down the output if no load, auto recovers when load back to normal.

Dimensions

Safety \& EMC

Withstand Voltage: I/P-0/P: 3750Vac
Isolation Resistance:
Safety Standards:
EMC Emission:
EMC Immunity:

Others

Dimension: $\quad 167 \times 39 \times 30 \mathrm{~mm}(\mathrm{~L} \times \mathrm{W} \times \mathrm{H})$
Packing:
Weight(G.W.):
$168 \times 41 \times 32$
$160 \mathrm{~g} \pm 10 \mathrm{~g}$

DALI Connection

Push Connection

0～100\％Dimming
Short press to on／off，long press to dim．The dimming interface priority：First DALI，next Push Dim．

Push Dimming

－On／off control：Short press．
－Stepless dimming：Long press．
－With every other long press，the light level goes to the opposite direction．
－Dimming memory：Brightness will be the same as previously adjusted when turning off and on again．
Reset Switch

LED Current Selection

Quick options：DIP switch for 8 optional currents＇quick selection（see the table below）．

山」	山】 7	」 \uparrow ¢	＋+	T」」
200 mA	350 mA	500 mA		
	10－54V	10.5		

甲 ¢ +	甲甲	甲甲甲	甲 ON	
900 mA	1050m	1200		
10－40V	10－35V	10－3		

＊After current setting by DIP switch，power off and then power on to make the new current effective．
＊E．g．LED $3.2 \mathrm{~V} / \mathrm{pcs}$ ： $10-54 \mathrm{~V}$ can power $3-16$ pcs LEDs in series， $10-30 \mathrm{~V}$ can power $3-9 \mathrm{pcs}$ LEDs，the max quantity of LEDs in series will be subject to the actual voltage of LED

Relationship Diagrams

Efficiency vs Load

Power Factor Characteristic

Current vs voltage

