Specification

Customer's Name: \qquad
Product Material No. : \qquad
Model No. :

LF-GSD040YC

Version:
V1.1

Customer Approval

Examined by	Reviewed by	Approved by

LIFUD Approval

Drafted by	Reviewed by	Approved by

Full Model Numbers Required by the Customer

Full model No.		Full model No.	
Full model No.		Full model No.	

E.C. List

Version	Description of Change	R\&D	Date
1.0	Formal version	Shi Xiongguo	$2019-04-15$
1.1	Revised input current and label.	Shi Xiongguo	$2019-04-18$

Lifud Technology Co., Ltd.
Building F, Kutto Industrial Park, No. 26 Xinhe Road, Xinqiao Street, Bao'an District, Shenzhen, China 518104
www.lifud.com | Technical support: +86 75583739299 (Office hour: 08:30-18:00 on working days)

Product Description

LF-GSD040YC series is a 40W constant current LED power supply. It conforms to DALI 2.0 compatibility certification including IEC 62386-101,102,207. Input voltage limit is 180-264VAC. Output current can be selected from 550 mA to 1050 mA via a DIP switch, 50 mA every step. Owing to the unique circuit structure, the efficiency of this series reaches up to 88%. Equipped with 5 types of dimming functions (including DALI, PUSH, 0-10V, PWM \& $R x$), this product can be a solution for various LED lighting system designs.

Product Feature

- Constant current output. The current value can be selected via a DIP switch, 50 mA every step.
- Plastic housing. Compliance with the Class I and Class II light fixture
- Built-in active power factor correction function
- Stand-by power consumption $<0.5 \mathrm{~W}$
- DALI dimming curve (Logarithmic or linear dimming curve can be switched to each other via DALI interface.)
- PUSH dim
- Synchronous dimming: 10 pcs of power supplies
- Warranty: 7 years (Please refer to the warranty condition.)

Application

- warm house lighting
- flood-light lighting
- indoor office lighting
- decorative lighting
- commercial lighting
- residential lighting

Technical Data

	Full Model Number	LF-GSD040YC										
Output	Output Voltage	25-42V										
	Output Current	The output current is selectable via a DIP switch. Refer to the DIP switch table.										
		550	600 mA	${ }^{650}$	${ }^{700}$	${ }_{\text {mA }} 7$	${ }^{800}$	${ }_{\text {mA }} 8$	${ }_{\text {mA }} 9$	${ }^{950}$	1000	1050
	Ripple Voltage	$<1 \mathrm{~V}$ (20 MHz)										
	Percent Flicker	<0.5\%										
	Current Tolerance	$\pm 5 \%$										
	Temperature Drift	$\pm 10 \%$										
	Line Regulation	$\pm 5 \%$										
	Start-up Time	$230 \mathrm{~V}<1 \mathrm{~s}$										
Input	Line Regulation	$\stackrel{ \pm 5 \%}{220-240 \mathrm{VAC} \text { (voltage limit: } 180-264 \mathrm{VAC} \text {) }}$										
	Input Voltage											
	DC Input Voltage	310-340VAC (voltage limit: $254-374 \mathrm{VAC}$)										
	Input Frequency	47-63Hz										
	Input Current	0.35A Max.										
	Power Factor	$\geq 0.95 / 230 \mathrm{VAC}$ (LED load)										
	THD	<15\%										
	Efficiency	$\geq 88 \% / 230 \mathrm{VAC}$										
	Inrush Current	$\leq 60 \mathrm{~A} / 350 \mathrm{uS@230VAC}$ (Max.)										
	Qty of the same power supply model that can be configured by the circuit breaker	@230VAC, 18 pcs of power supplies (16A type-B circuit breaker); 30 pcs of power supplies (16A type-C circuit breaker)										
	Leakage Current	$\leq 0.7 \mathrm{~mA}$										
	Standby Power Consumption	$\leq 0.5 \mathrm{~W}$ (when the OFF signal of DALI takes effect)										
Protective Feature	Open-Circuit Protection	Open circuit voltage 555 V										
	Short-Circuit Protection	Hiccup mode (auto-recovery)										
Environment Condition	Working Temperature	$-30^{\circ} \mathrm{C} \sim+50^{\circ} \mathrm{C}$										
	Working Humidity	$20-90 \% \mathrm{RH}$ (no condensation)										
	Storage Temperature/Humidity	$-40^{\circ} \mathrm{C} \sim 80^{\circ} \mathrm{C}$ (six months under class I environment); $10-90 \% \mathrm{RH}$ (no condensation)										
	Atmospheric Pressure	86-10	6 KPa									
Safety \& Norm	Certificate	CB.CE.ENEC.RCM.CCC.DALI 2.0										
	Withstand Voltage	IIP-O/P: 3.75KV, 5mA, 60s										
	Insulation Resistance	I/P-O/P: 500VDC, >100M										
	Surge Rating	IEC61000-4-5 (L-N: 1KV)										
	Safety Standard	EN61347, GB19510										
	Electromagnetic Interference	EN55015, EN61000-3-2										
	Electromagnetic Susceptibility	EN61000-4-2, 3, 4, 5, 6, 8, 11; EN61547										
	Electromagnetic Compatibility	typical light fixture type: panel light										
Others	IP Rating	IP20										
	Warranty Condition	7 years (Tc: $80{ }^{\circ} \mathrm{C}$)										
	DALI Executive Standard	IEC 62386-101, 102, 207: DALI 2.0										
	Noise Rating	$\leq 29 \mathrm{db}$ (Tested in a silent room and the noise collector was 10 cm away from the power supply.)										
	TRIAC Universal Dimmer											
Testing Equipment	AC power source: CHROMA6530, digital power meter: CHROMA66202, Oscilloscope: Tektronix DPO3014, DC electronic load: M9712B, LED board, constant temperature and humidity chamber, lightning surge generatorEverfine EMS61000-5B, rapid group pulse generator: Everfine EMS61000-4A, spectrum analyzer: KH3935, hi-pot tester: TH9201B, stroboscope (percent flicker tester) $60 \mathrm{~N}-01$, etc.											
Testing Condition	Unless otherwise stated, the parameters of the power factor and efficiency are the test results under the ambient temperature of $25^{\circ} \mathrm{C}$ and humidity of $50 \%, \mathrm{AC}$ input of 230 V and 90% load.											
Additional Remark	1. It is recommended that customer should install an over \& under voltage protection and surge protection device to ensure safety before connecting to electricity. 2. The PC cover, housing, end caps and other parts of the LED driver inside the LED light fixture must conform to UL94 V-0 flammability standard or above. 3. As an accessory, the LED driver is not the only factor determining the EMC performance of the LED light fixture. The structure and the wiring of the light fixture are also relevant. Thus it's strongly recommended the LED light fixture manufacturer re-confirms the EMC of the whole LED light fixture.											

Lifud

Function Diagram

DIP Switch Table

DIP switch setting							
Ta	Vo DC	Current	1	2	3	4	5
$50^{\circ} \mathrm{C}$	$25 \mathrm{~V}-42 \mathrm{~V}$	1050 mA	-	-	-	-	-
		1000 mA	-	-	-	ON	-
		950 mA	-	-	ON	-	-
		900 mA	-	-	ON	ON	-
		850 mA	-	ON	-	-	-
		800 mA	-	ON	-	ON	-
		750mA	-	ON	ON	-	-
		700 mA	-	ON	ON	ON	-
		650 mA	ON	-	-	-	-
		600 mA	ON	-	-	ON	-
		550 mA	ON	-	ON	-	-

Remark: The default current for all DIP switch settings is 1050mA, except for the settings mentioned above.

Dimension (unit: $\mathbf{m m}$, tolerance: $\mathbf{+ 0 . 5 m m}$)

Lifud

Label

Packaging Specification

model	carton dimension	quantity and weight
LF-GSD040YC	$385^{*} 285^{*} 210 \mathrm{~mm}$	$9 \mathrm{pcs} / \mathrm{layer}, 6$ layers/ctn, $54 \mathrm{pcs} / \mathrm{ctn}$, weight: $9.82 \mathrm{~kg} / \mathrm{ctn}, 163.6 \mathrm{~g} / \mathrm{pc}$

Product Feature Curve

1. PF curve

2. Efficiency curve

3. Lifetime curve

The curve below illustrates the driver's lifetime data when the its max. casing temperature in an airtight space reaches $40^{\circ} \mathrm{C}$, $50^{\circ} \mathrm{C}, 60^{\circ} \mathrm{C}, 70^{\circ} \mathrm{C}, 80^{\circ} \mathrm{C}$ and $90^{\circ} \mathrm{C}$.

4. Dimming curve

25V 550mA DALI logarithmic dimming curve

42V 1050mA DALI logarithmic dimming curve

Statement of Dimming Operation

1. PUSH dim wiring diagram

(1)

Operation	Operation Time	Function
Instant Push	$0.1 \mathrm{sec} \sim 1 \mathrm{sec}$	Light On / Off
Long Push	$1.5 \mathrm{sec} \sim 10 \mathrm{sec}$	Brighter / Dimmer
Reset Push	$>11 \mathrm{sec}$	Back to Brightest

(2) Factory default setting is of 100% brightness.
(3) The push operation won't cause any variation if it's less than 0.1 sec .
(4) When controlling via the same button, in $0-10 \mathrm{~V}$ mode, up to 10 pcs of power supplies can be connected in parallel, and in DALI \& PUSH mode, up to 64 pcs of power supplies can be connected in parallel.
(5) The max. length of the wire from the button to the furthest LED power supply is 135 m . Wire diameter: 16-22AWG.
(6) The button can only be connected to the AC-L and PUSH terminals of LF-GSD040YC. Connecting to AC-N will cause short circuit. t. Δ
(7) The min. dimming depth of PUSH is $2 \% *$ lout.
2. DALI dimming operation
(1) Connect DALI signal to DA1 and DA2 terminals.
(2) DALI protocol includes 16 group 64 IPs.
(3) The min. dimming depth of DALI is $2 \% *$ lout.
3. 0-10V, PWM, Rx dimming operation
(1) $0-10 \mathrm{~V}, \mathrm{PWM}$ and $R x$ signals should be connected to DIM terminal
(2) In $0-10 \mathrm{~V}$ mode, the light turns off when the input voltage is below 0.3 V and turns on when it's above 0.5 V .
(3) The min. dimming depth of $0-10 \mathrm{~V}$ is 5% *lout.
4. Synchronous dimming operation
(1) Max. 10 pcs of LF-GSD040YC can be dimmed synchronously. (one master and 9 slaves)
(2) The longest wire between two products can be of 15 m . Wire diameter: 16-22AWG
(3) The longest wire from the master to the furthest slaves is of 135 m . Wire diameter: 16-22AWG
(4) The master can directly control slaves via DALI, 0-10V and PUSH dimming signals to realize synchronous dimming function.
(5) Wiring diagram of synchronous dimming:

(6) Before using synchronous dimming function, make sure all LF-GSD040YC are at 100% output.
(7) When the synchronous dimming signal is withdrawn from the slaves, the slaves enter DALI mode by default.
5. Switch between dimming modes
(1) Switch between DALI and 0-10V

1) $\mathrm{DALI} \rightarrow 0-10 \mathrm{~V}$: Supply AC power, in DALI mode, (make sure the current states lasts for at least 2 sec,) make sure the DC voltage change value of the $0-10 \mathrm{~V}$ terminal is higher than 5 V and keep this states for over 1 sec . The dimming mode will be switched to $0-10 \mathrm{~V}$ mode.
2) $0-10 \mathrm{~V} \rightarrow \mathrm{DALI}:$ Supply $A C$ power, in $0-10 \mathrm{~V}$ mode, (make sure the current states lasts for at least 2 sec,) the DALI mode can be switched via DALI on/off or the knob.
(2) Switch between DALI and PUSH
3) DALI \rightarrow PUSH: Supply AC power, in DALI mode, (make sure the current states lasts for at least 2 sec,) long press the PUSH button for over 3 sec and it'll be switch to PUSH mode.
4) PUSH \rightarrow DALI: Supply AC power, in PUSH mode, (make sure the current states lasts for at least 2 sec,) the DALI mode can be switched via DALI on/off or the knob.
(3) Switch between PUSH and 0-10V
5) PUSH $\rightarrow 0-10 \mathrm{~V}$: Supply AC power, in PUSH mode, (make sure the current states lasts for at least 2 sec,) make sure the $D C$ voltage change value of the $0-10 \mathrm{~V}$ terminal is higher than 5 V and keep this states for over 1 sec . The dimming mode will be switched to $0-10 \mathrm{~V}$ mode.
6) $0-10 \mathrm{~V} \rightarrow$ PUSH: Supply AC power, in $0-10 \mathrm{~V}$ mode, (make sure the current states lasts for at least 2 sec,) long press the PUSH button for over 3 sec and it'll be switch to PUSH mode.

Remark: Before switching DALI mode to other modes, make sure the light is on. It's a default setting that in DALI mode, when the light is off, the power supply cannot be switched to other modes.
6. Wiring diagram

Remark: The final right of interpretation of contents of this data sheet belongs to Lifud Technology Co., Ltd.

